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User Friendliness 
Friendliness is the level of tolerance built into a 
system that enables the user to cope with com- 
plexity and permits minor error and variable per- 
formance on the part of the user. In Datamation, 
D. Verne Morland records that the term "user 
friendly" is being widely applied to systems. "The 
suggestion that systems can actually befriend 
their users is attractive," says Morland, as "many 
users have come to believe that data processing 
should be more than a passive tool for the solu- 
tion of predefined problems" [1]. Morland defines 
user friendliness in terms of eight characteristics 
which we have expanded, based on our exper- 
ience, to provide guidance for systems builders. 

Systems Design 
Clarity of purpose. Each system should be 
designed with specific objectives in mind from its 
inception. Each part of the system should be 
clear and unambiguous in its function. The com- 
plexity of the system should always be less (for 
the user) than the complexity of the task. 

Functional flexibility. The system should be able 
to support the user in handling most problems in 
well defined classes. 

Unity of systems design. All systems com- 
ponents should be based on the same design 
principles and implemented as an integral unit. 

Completeness. The system should be sub- 
divided into reasonable tasks defined by the end 
user. The system should be able to handle any 
task, basic or advanced, or any combination of 
tasks which have been defined. 

Error acceptability. The system should be 
designed and constructed with the bias that the 
user is correct; all user inputs, requests and 
actions should be interpreted and executed in this 
context [2, 3]. 

Training and Documentation 
User manual. Clear user manuals, preferably 
prepared by the user and vetted by an analyst, 
should show the means for correct operation and 
a complete set of diagnostics and messages. 
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When entries are repetitive, commands may be 
omitted. 

Diverse data. When ambiguity exists in referenc- 
ing data, alternative spellings and synonyms 
should be presented as options. When hier- 
archical libraries exist, the hierarchy should be 
annotated with the option. When homonyms 
exist, the definition should be shown if the con- 
text is not clear. 

User Errors 

Error notification. The system should be sym- 
pathetic and helpful when it ascertains a user 
error. It should explain in clear terms why 
something is not possible. 

Misspelling. The system should make every 
effort to match the user's intention. It should allow 
common transpositions and misspelled words. 
When ambiguity exists, possible choices should 
be presented to the user for selection of the cor- 
rect one. 

Error minimization. The system should not allow 
damage to be caused by a user error. The system 
should require only that erroneous data or com- 
mands be re-entered correctly. Potentially 
disastrous errors like deletion of a file should be 
reversible. 

Dependability. The system should rarely break 
down or throw confusing surprises at the user. 
Error outputs for specialists should be clearly 
marked as outside the user's knowledge and 
addressed to the systems software team. The 
system should be durable, flexible, and seek 
alternatives - even to reconfiguration. It should 
flash messages of overload, embargoes, or 
degradation. 

No scrutiny. The system should not tabulate the 
number of errors without permission of the user. 
No reports should be prepared on the user's 
competence. 
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System Response 

Predictability. The system should estimate the 
time required for any job and should apply stan- 
dard installation costs to give the user an idea of 
the resources to be used [4]. 
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In sum, user friendly systems must be efficient, 
give good performance, be available when 
needed, and be reliable. It must be superbly 
documented. The system must be free of idiosyn- 
cracy. Maintainability is essential and the system 
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and design of all information systems, large and 
small, should be subject to a weighted evaluation 
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