
Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions

User Friendliness
Friendliness is the level of tolerance built into a
system that enables the user to cope with com-
plexity and permits minor error and variable per-
formance on the part of the user. In Datamation,
D. Verne Morland records that the term "user
friendly" is being widely applied to systems. "The
suggestion that systems can actually befriend
their users is attractive," says Morland, as "many
users have come to believe that data processing
should be more than a passive tool for the solu-
tion of predefined problems" [1]. Morland defines
user friendliness in terms of eight characteristics
which we have expanded, based on our exper-
ience, to provide guidance for systems builders.

Systems Design
Clarity of purpose. Each system should be
designed with specific objectives in mind from its
inception. Each part of the system should be
clear and unambiguous in its function. The com-
plexity of the system should always be less (for
the user) than the complexity of the task.

Functional flexibility. The system should be able
to support the user in handling most problems in
well defined classes.

Unity of systems design. All systems com-
ponents should be based on the same design
principles and implemented as an integral unit.

Completeness. The system should be sub-
divided into reasonable tasks defined by the end
user. The system should be able to handle any
task, basic or advanced, or any combination of
tasks which have been defined.

Error acceptability. The system should be
designed and constructed with the bias that the
user is correct; all user inputs, requests and
actions should be interpreted and executed in this
context [2, 3].

Training and Documentation
User manual. Clear user manuals, preferably
prepared by the user and vetted by an analyst,
should show the means for correct operation and
a complete set of diagnostics and messages.

User Friendliness
Friendliness is the level of tolerance built into a
system that enables the user to cope with com-
plexity and permits minor error and variable per-
formance on the part of the user. In Datamation,
D. Verne Morland records that the term "user
friendly" is being widely applied to systems. "The
suggestion that systems can actually befriend
their users is attractive," says Morland, as "many
users have come to believe that data processing
should be more than a passive tool for the solu-
tion of predefined problems" [1]. Morland defines
user friendliness in terms of eight characteristics
which we have expanded, based on our exper-
ience, to provide guidance for systems builders.

Systems Design
Clarity of purpose. Each system should be
designed with specific objectives in mind from its
inception. Each part of the system should be
clear and unambiguous in its function. The com-
plexity of the system should always be less (for
the user) than the complexity of the task.

Functional flexibility. The system should be able
to support the user in handling most problems in
well defined classes.

Unity of systems design. All systems com-
ponents should be based on the same design
principles and implemented as an integral unit.

Completeness. The system should be sub-
divided into reasonable tasks defined by the end
user. The system should be able to handle any
task, basic or advanced, or any combination of
tasks which have been defined.

Error acceptability. The system should be
designed and constructed with the bias that the
user is correct; all user inputs, requests and
actions should be interpreted and executed in this
context [2, 3].

Training and Documentation
User manual. Clear user manuals, preferably
prepared by the user and vetted by an analyst,
should show the means for correct operation and
a complete set of diagnostics and messages.

User Friendliness
Friendliness is the level of tolerance built into a
system that enables the user to cope with com-
plexity and permits minor error and variable per-
formance on the part of the user. In Datamation,
D. Verne Morland records that the term "user
friendly" is being widely applied to systems. "The
suggestion that systems can actually befriend
their users is attractive," says Morland, as "many
users have come to believe that data processing
should be more than a passive tool for the solu-
tion of predefined problems" [1]. Morland defines
user friendliness in terms of eight characteristics
which we have expanded, based on our exper-
ience, to provide guidance for systems builders.

Systems Design
Clarity of purpose. Each system should be
designed with specific objectives in mind from its
inception. Each part of the system should be
clear and unambiguous in its function. The com-
plexity of the system should always be less (for
the user) than the complexity of the task.

Functional flexibility. The system should be able
to support the user in handling most problems in
well defined classes.

Unity of systems design. All systems com-
ponents should be based on the same design
principles and implemented as an integral unit.

Completeness. The system should be sub-
divided into reasonable tasks defined by the end
user. The system should be able to handle any
task, basic or advanced, or any combination of
tasks which have been defined.

Error acceptability. The system should be
designed and constructed with the bias that the
user is correct; all user inputs, requests and
actions should be interpreted and executed in this
context [2, 3].

Training and Documentation
User manual. Clear user manuals, preferably
prepared by the user and vetted by an analyst,
should show the means for correct operation and
a complete set of diagnostics and messages.

User Friendliness
Friendliness is the level of tolerance built into a
system that enables the user to cope with com-
plexity and permits minor error and variable per-
formance on the part of the user. In Datamation,
D. Verne Morland records that the term "user
friendly" is being widely applied to systems. "The
suggestion that systems can actually befriend
their users is attractive," says Morland, as "many
users have come to believe that data processing
should be more than a passive tool for the solu-
tion of predefined problems" [1]. Morland defines
user friendliness in terms of eight characteristics
which we have expanded, based on our exper-
ience, to provide guidance for systems builders.

Systems Design
Clarity of purpose. Each system should be
designed with specific objectives in mind from its
inception. Each part of the system should be
clear and unambiguous in its function. The com-
plexity of the system should always be less (for
the user) than the complexity of the task.

Functional flexibility. The system should be able
to support the user in handling most problems in
well defined classes.

Unity of systems design. All systems com-
ponents should be based on the same design
principles and implemented as an integral unit.

Completeness. The system should be sub-
divided into reasonable tasks defined by the end
user. The system should be able to handle any
task, basic or advanced, or any combination of
tasks which have been defined.

Error acceptability. The system should be
designed and constructed with the bias that the
user is correct; all user inputs, requests and
actions should be interpreted and executed in this
context [2, 3].

Training and Documentation
User manual. Clear user manuals, preferably
prepared by the user and vetted by an analyst,
should show the means for correct operation and
a complete set of diagnostics and messages.

User Friendliness
Friendliness is the level of tolerance built into a
system that enables the user to cope with com-
plexity and permits minor error and variable per-
formance on the part of the user. In Datamation,
D. Verne Morland records that the term "user
friendly" is being widely applied to systems. "The
suggestion that systems can actually befriend
their users is attractive," says Morland, as "many
users have come to believe that data processing
should be more than a passive tool for the solu-
tion of predefined problems" [1]. Morland defines
user friendliness in terms of eight characteristics
which we have expanded, based on our exper-
ience, to provide guidance for systems builders.

Systems Design
Clarity of purpose. Each system should be
designed with specific objectives in mind from its
inception. Each part of the system should be
clear and unambiguous in its function. The com-
plexity of the system should always be less (for
the user) than the complexity of the task.

Functional flexibility. The system should be able
to support the user in handling most problems in
well defined classes.

Unity of systems design. All systems com-
ponents should be based on the same design
principles and implemented as an integral unit.

Completeness. The system should be sub-
divided into reasonable tasks defined by the end
user. The system should be able to handle any
task, basic or advanced, or any combination of
tasks which have been defined.

Error acceptability. The system should be
designed and constructed with the bias that the
user is correct; all user inputs, requests and
actions should be interpreted and executed in this
context [2, 3].

Training and Documentation
User manual. Clear user manuals, preferably
prepared by the user and vetted by an analyst,
should show the means for correct operation and
a complete set of diagnostics and messages.

User Friendliness
Friendliness is the level of tolerance built into a
system that enables the user to cope with com-
plexity and permits minor error and variable per-
formance on the part of the user. In Datamation,
D. Verne Morland records that the term "user
friendly" is being widely applied to systems. "The
suggestion that systems can actually befriend
their users is attractive," says Morland, as "many
users have come to believe that data processing
should be more than a passive tool for the solu-
tion of predefined problems" [1]. Morland defines
user friendliness in terms of eight characteristics
which we have expanded, based on our exper-
ience, to provide guidance for systems builders.

Systems Design
Clarity of purpose. Each system should be
designed with specific objectives in mind from its
inception. Each part of the system should be
clear and unambiguous in its function. The com-
plexity of the system should always be less (for
the user) than the complexity of the task.

Functional flexibility. The system should be able
to support the user in handling most problems in
well defined classes.

Unity of systems design. All systems com-
ponents should be based on the same design
principles and implemented as an integral unit.

Completeness. The system should be sub-
divided into reasonable tasks defined by the end
user. The system should be able to handle any
task, basic or advanced, or any combination of
tasks which have been defined.

Error acceptability. The system should be
designed and constructed with the bias that the
user is correct; all user inputs, requests and
actions should be interpreted and executed in this
context [2, 3].

Training and Documentation
User manual. Clear user manuals, preferably
prepared by the user and vetted by an analyst,
should show the means for correct operation and
a complete set of diagnostics and messages.

Training. The user should receive training in the
use of the system.

User-skill. The system should allow users at
every level of skill and experience to obtain useful
results. The system must allow for relapses and
ill-health of the user. Each system should have a
minimum expectancy and graded steps to more
difficult (or complex) accomplishments.

Test data. A system should have a sample of data
with which to test the system, stage a demonstra-
tion, and train the user.

Self-teaching. As an extension of a demonstra-
tion facility, self-teaching facilities to guide the
user through main facilities into more
sophisticated functions should be available [4].

Aid in process. The system should show the
user how to enquire about the logical sequence of
operations and alternative actions that can be
taken.

Questioning. The user should be able to ques-
tion the meaning of any function, command, data,
or operation in the system.

Welcoming
Easy access. The system should encourage use
in physical and logical terms. It should not ignore a
command. If it is busy, it should say so in
apologetic terms.

Passwords. Privacy and password provisions
should be explained before the user is permitted
access to the system.

Importance. The user should be made to feel that
his job is the most important task in the system.

User Working Dialogue
Conversation. The system should behave like a
machine, not "chatty," overly friendly, or con-
descending. It should be possible for expert
users to skip parts of the introductory level,
primarily included for beginners and intermediate
users.

Useful abbreviation. When options exist and the
context is clear, the system should permit
abbreviation of mandatory and optional keywords.

Training. The user should receive training in the
use of the system.

User-skill. The system should allow users at
every level of skill and experience to obtain useful
results. The system must allow for relapses and
ill-health of the user. Each system should have a
minimum expectancy and graded steps to more
difficult (or complex) accomplishments.

Test data. A system should have a sample of data
with which to test the system, stage a demonstra-
tion, and train the user.

Self-teaching. As an extension of a demonstra-
tion facility, self-teaching facilities to guide the
user through main facilities into more
sophisticated functions should be available [4].

Aid in process. The system should show the
user how to enquire about the logical sequence of
operations and alternative actions that can be
taken.

Questioning. The user should be able to ques-
tion the meaning of any function, command, data,
or operation in the system.

Welcoming
Easy access. The system should encourage use
in physical and logical terms. It should not ignore a
command. If it is busy, it should say so in
apologetic terms.

Passwords. Privacy and password provisions
should be explained before the user is permitted
access to the system.

Importance. The user should be made to feel that
his job is the most important task in the system.

User Working Dialogue
Conversation. The system should behave like a
machine, not "chatty," overly friendly, or con-
descending. It should be possible for expert
users to skip parts of the introductory level,
primarily included for beginners and intermediate
users.

Useful abbreviation. When options exist and the
context is clear, the system should permit
abbreviation of mandatory and optional keywords.

Training. The user should receive training in the
use of the system.

User-skill. The system should allow users at
every level of skill and experience to obtain useful
results. The system must allow for relapses and
ill-health of the user. Each system should have a
minimum expectancy and graded steps to more
difficult (or complex) accomplishments.

Test data. A system should have a sample of data
with which to test the system, stage a demonstra-
tion, and train the user.

Self-teaching. As an extension of a demonstra-
tion facility, self-teaching facilities to guide the
user through main facilities into more
sophisticated functions should be available [4].

Aid in process. The system should show the
user how to enquire about the logical sequence of
operations and alternative actions that can be
taken.

Questioning. The user should be able to ques-
tion the meaning of any function, command, data,
or operation in the system.

Welcoming
Easy access. The system should encourage use
in physical and logical terms. It should not ignore a
command. If it is busy, it should say so in
apologetic terms.

Passwords. Privacy and password provisions
should be explained before the user is permitted
access to the system.

Importance. The user should be made to feel that
his job is the most important task in the system.

User Working Dialogue
Conversation. The system should behave like a
machine, not "chatty," overly friendly, or con-
descending. It should be possible for expert
users to skip parts of the introductory level,
primarily included for beginners and intermediate
users.

Useful abbreviation. When options exist and the
context is clear, the system should permit
abbreviation of mandatory and optional keywords.

Training. The user should receive training in the
use of the system.

User-skill. The system should allow users at
every level of skill and experience to obtain useful
results. The system must allow for relapses and
ill-health of the user. Each system should have a
minimum expectancy and graded steps to more
difficult (or complex) accomplishments.

Test data. A system should have a sample of data
with which to test the system, stage a demonstra-
tion, and train the user.

Self-teaching. As an extension of a demonstra-
tion facility, self-teaching facilities to guide the
user through main facilities into more
sophisticated functions should be available [4].

Aid in process. The system should show the
user how to enquire about the logical sequence of
operations and alternative actions that can be
taken.

Questioning. The user should be able to ques-
tion the meaning of any function, command, data,
or operation in the system.

Welcoming
Easy access. The system should encourage use
in physical and logical terms. It should not ignore a
command. If it is busy, it should say so in
apologetic terms.

Passwords. Privacy and password provisions
should be explained before the user is permitted
access to the system.

Importance. The user should be made to feel that
his job is the most important task in the system.

User Working Dialogue
Conversation. The system should behave like a
machine, not "chatty," overly friendly, or con-
descending. It should be possible for expert
users to skip parts of the introductory level,
primarily included for beginners and intermediate
users.

Useful abbreviation. When options exist and the
context is clear, the system should permit
abbreviation of mandatory and optional keywords.

Training. The user should receive training in the
use of the system.

User-skill. The system should allow users at
every level of skill and experience to obtain useful
results. The system must allow for relapses and
ill-health of the user. Each system should have a
minimum expectancy and graded steps to more
difficult (or complex) accomplishments.

Test data. A system should have a sample of data
with which to test the system, stage a demonstra-
tion, and train the user.

Self-teaching. As an extension of a demonstra-
tion facility, self-teaching facilities to guide the
user through main facilities into more
sophisticated functions should be available [4].

Aid in process. The system should show the
user how to enquire about the logical sequence of
operations and alternative actions that can be
taken.

Questioning. The user should be able to ques-
tion the meaning of any function, command, data,
or operation in the system.

Welcoming
Easy access. The system should encourage use
in physical and logical terms. It should not ignore a
command. If it is busy, it should say so in
apologetic terms.

Passwords. Privacy and password provisions
should be explained before the user is permitted
access to the system.

Importance. The user should be made to feel that
his job is the most important task in the system.

User Working Dialogue
Conversation. The system should behave like a
machine, not "chatty," overly friendly, or con-
descending. It should be possible for expert
users to skip parts of the introductory level,
primarily included for beginners and intermediate
users.

Useful abbreviation. When options exist and the
context is clear, the system should permit
abbreviation of mandatory and optional keywords.

Training. The user should receive training in the
use of the system.

User-skill. The system should allow users at
every level of skill and experience to obtain useful
results. The system must allow for relapses and
ill-health of the user. Each system should have a
minimum expectancy and graded steps to more
difficult (or complex) accomplishments.

Test data. A system should have a sample of data
with which to test the system, stage a demonstra-
tion, and train the user.

Self-teaching. As an extension of a demonstra-
tion facility, self-teaching facilities to guide the
user through main facilities into more
sophisticated functions should be available [4].

Aid in process. The system should show the
user how to enquire about the logical sequence of
operations and alternative actions that can be
taken.

Questioning. The user should be able to ques-
tion the meaning of any function, command, data,
or operation in the system.

Welcoming
Easy access. The system should encourage use
in physical and logical terms. It should not ignore a
command. If it is busy, it should say so in
apologetic terms.

Passwords. Privacy and password provisions
should be explained before the user is permitted
access to the system.

Importance. The user should be made to feel that
his job is the most important task in the system.

User Working Dialogue
Conversation. The system should behave like a
machine, not "chatty," overly friendly, or con-
descending. It should be possible for expert
users to skip parts of the introductory level,
primarily included for beginners and intermediate
users.

Useful abbreviation. When options exist and the
context is clear, the system should permit
abbreviation of mandatory and optional keywords.

MIS Quarterly/March 1984 1 MIS Quarterly/March 1984 1 MIS Quarterly/March 1984 1 MIS Quarterly/March 1984 1 MIS Quarterly/March 1984 1 MIS Quarterly/March 1984 1

Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions

When entries are repetitive, commands may be
omitted.

Diverse data. When ambiguity exists in referenc-
ing data, alternative spellings and synonyms
should be presented as options. When hier-
archical libraries exist, the hierarchy should be
annotated with the option. When homonyms
exist, the definition should be shown if the con-
text is not clear.

User Errors

Error notification. The system should be sym-
pathetic and helpful when it ascertains a user
error. It should explain in clear terms why
something is not possible.

Misspelling. The system should make every
effort to match the user's intention. It should allow
common transpositions and misspelled words.
When ambiguity exists, possible choices should
be presented to the user for selection of the cor-
rect one.

Error minimization. The system should not allow
damage to be caused by a user error. The system
should require only that erroneous data or com-
mands be re-entered correctly. Potentially
disastrous errors like deletion of a file should be
reversible.

Dependability. The system should rarely break
down or throw confusing surprises at the user.
Error outputs for specialists should be clearly
marked as outside the user's knowledge and
addressed to the systems software team. The
system should be durable, flexible, and seek
alternatives - even to reconfiguration. It should
flash messages of overload, embargoes, or
degradation.

No scrutiny. The system should not tabulate the
number of errors without permission of the user.
No reports should be prepared on the user's
competence.

When entries are repetitive, commands may be
omitted.

Diverse data. When ambiguity exists in referenc-
ing data, alternative spellings and synonyms
should be presented as options. When hier-
archical libraries exist, the hierarchy should be
annotated with the option. When homonyms
exist, the definition should be shown if the con-
text is not clear.

User Errors

Error notification. The system should be sym-
pathetic and helpful when it ascertains a user
error. It should explain in clear terms why
something is not possible.

Misspelling. The system should make every
effort to match the user's intention. It should allow
common transpositions and misspelled words.
When ambiguity exists, possible choices should
be presented to the user for selection of the cor-
rect one.

Error minimization. The system should not allow
damage to be caused by a user error. The system
should require only that erroneous data or com-
mands be re-entered correctly. Potentially
disastrous errors like deletion of a file should be
reversible.

Dependability. The system should rarely break
down or throw confusing surprises at the user.
Error outputs for specialists should be clearly
marked as outside the user's knowledge and
addressed to the systems software team. The
system should be durable, flexible, and seek
alternatives - even to reconfiguration. It should
flash messages of overload, embargoes, or
degradation.

No scrutiny. The system should not tabulate the
number of errors without permission of the user.
No reports should be prepared on the user's
competence.

When entries are repetitive, commands may be
omitted.

Diverse data. When ambiguity exists in referenc-
ing data, alternative spellings and synonyms
should be presented as options. When hier-
archical libraries exist, the hierarchy should be
annotated with the option. When homonyms
exist, the definition should be shown if the con-
text is not clear.

User Errors

Error notification. The system should be sym-
pathetic and helpful when it ascertains a user
error. It should explain in clear terms why
something is not possible.

Misspelling. The system should make every
effort to match the user's intention. It should allow
common transpositions and misspelled words.
When ambiguity exists, possible choices should
be presented to the user for selection of the cor-
rect one.

Error minimization. The system should not allow
damage to be caused by a user error. The system
should require only that erroneous data or com-
mands be re-entered correctly. Potentially
disastrous errors like deletion of a file should be
reversible.

Dependability. The system should rarely break
down or throw confusing surprises at the user.
Error outputs for specialists should be clearly
marked as outside the user's knowledge and
addressed to the systems software team. The
system should be durable, flexible, and seek
alternatives - even to reconfiguration. It should
flash messages of overload, embargoes, or
degradation.

No scrutiny. The system should not tabulate the
number of errors without permission of the user.
No reports should be prepared on the user's
competence.

When entries are repetitive, commands may be
omitted.

Diverse data. When ambiguity exists in referenc-
ing data, alternative spellings and synonyms
should be presented as options. When hier-
archical libraries exist, the hierarchy should be
annotated with the option. When homonyms
exist, the definition should be shown if the con-
text is not clear.

User Errors

Error notification. The system should be sym-
pathetic and helpful when it ascertains a user
error. It should explain in clear terms why
something is not possible.

Misspelling. The system should make every
effort to match the user's intention. It should allow
common transpositions and misspelled words.
When ambiguity exists, possible choices should
be presented to the user for selection of the cor-
rect one.

Error minimization. The system should not allow
damage to be caused by a user error. The system
should require only that erroneous data or com-
mands be re-entered correctly. Potentially
disastrous errors like deletion of a file should be
reversible.

Dependability. The system should rarely break
down or throw confusing surprises at the user.
Error outputs for specialists should be clearly
marked as outside the user's knowledge and
addressed to the systems software team. The
system should be durable, flexible, and seek
alternatives - even to reconfiguration. It should
flash messages of overload, embargoes, or
degradation.

No scrutiny. The system should not tabulate the
number of errors without permission of the user.
No reports should be prepared on the user's
competence.

When entries are repetitive, commands may be
omitted.

Diverse data. When ambiguity exists in referenc-
ing data, alternative spellings and synonyms
should be presented as options. When hier-
archical libraries exist, the hierarchy should be
annotated with the option. When homonyms
exist, the definition should be shown if the con-
text is not clear.

User Errors

Error notification. The system should be sym-
pathetic and helpful when it ascertains a user
error. It should explain in clear terms why
something is not possible.

Misspelling. The system should make every
effort to match the user's intention. It should allow
common transpositions and misspelled words.
When ambiguity exists, possible choices should
be presented to the user for selection of the cor-
rect one.

Error minimization. The system should not allow
damage to be caused by a user error. The system
should require only that erroneous data or com-
mands be re-entered correctly. Potentially
disastrous errors like deletion of a file should be
reversible.

Dependability. The system should rarely break
down or throw confusing surprises at the user.
Error outputs for specialists should be clearly
marked as outside the user's knowledge and
addressed to the systems software team. The
system should be durable, flexible, and seek
alternatives - even to reconfiguration. It should
flash messages of overload, embargoes, or
degradation.

No scrutiny. The system should not tabulate the
number of errors without permission of the user.
No reports should be prepared on the user's
competence.

When entries are repetitive, commands may be
omitted.

Diverse data. When ambiguity exists in referenc-
ing data, alternative spellings and synonyms
should be presented as options. When hier-
archical libraries exist, the hierarchy should be
annotated with the option. When homonyms
exist, the definition should be shown if the con-
text is not clear.

User Errors

Error notification. The system should be sym-
pathetic and helpful when it ascertains a user
error. It should explain in clear terms why
something is not possible.

Misspelling. The system should make every
effort to match the user's intention. It should allow
common transpositions and misspelled words.
When ambiguity exists, possible choices should
be presented to the user for selection of the cor-
rect one.

Error minimization. The system should not allow
damage to be caused by a user error. The system
should require only that erroneous data or com-
mands be re-entered correctly. Potentially
disastrous errors like deletion of a file should be
reversible.

Dependability. The system should rarely break
down or throw confusing surprises at the user.
Error outputs for specialists should be clearly
marked as outside the user's knowledge and
addressed to the systems software team. The
system should be durable, flexible, and seek
alternatives - even to reconfiguration. It should
flash messages of overload, embargoes, or
degradation.

No scrutiny. The system should not tabulate the
number of errors without permission of the user.
No reports should be prepared on the user's
competence.

System Response

Predictability. The system should estimate the
time required for any job and should apply stan-
dard installation costs to give the user an idea of
the resources to be used [4].

System Response

Predictability. The system should estimate the
time required for any job and should apply stan-
dard installation costs to give the user an idea of
the resources to be used [4].

System Response

Predictability. The system should estimate the
time required for any job and should apply stan-
dard installation costs to give the user an idea of
the resources to be used [4].

System Response

Predictability. The system should estimate the
time required for any job and should apply stan-
dard installation costs to give the user an idea of
the resources to be used [4].

System Response

Predictability. The system should estimate the
time required for any job and should apply stan-
dard installation costs to give the user an idea of
the resources to be used [4].

System Response

Predictability. The system should estimate the
time required for any job and should apply stan-
dard installation costs to give the user an idea of
the resources to be used [4].

Feedback. The system should let the user know
what it is doing, when it is experiencing difficulty,
or doing a long task.

Security. The system should not lose work that
has been successfully completed, even though
some of the (preceding or subsequent) tasks fail.

Incompleteness. The system should not create
unfinished business for the user. It should
acknowledge completeness.

Isolation. The system should not make the user
feel isolated, as though contact with the terminal
is being substituted for personal contact and nor-
mal social interchange.

Maintainability. System enhancement should be
made based on a periodic assessment of user
comments. Any changes should be incremental,
not revolutionary. Syntax and semantics should
be carried forward between releases.

In sum, user friendly systems must be efficient,
give good performance, be available when
needed, and be reliable. It must be superbly
documented. The system must be free of idiosyn-
cracy. Maintainability is essential and the system
must be amenable to change.

These user friendly characteristics represent
objectives that should be clearly in mind before
designing the system. We believe that the judging
and design of all information systems, large and
small, should be subject to a weighted evaluation
of these criteria.

Ken Meyer and
Mike Harper
British Gas

Feedback. The system should let the user know
what it is doing, when it is experiencing difficulty,
or doing a long task.

Security. The system should not lose work that
has been successfully completed, even though
some of the (preceding or subsequent) tasks fail.

Incompleteness. The system should not create
unfinished business for the user. It should
acknowledge completeness.

Isolation. The system should not make the user
feel isolated, as though contact with the terminal
is being substituted for personal contact and nor-
mal social interchange.

Maintainability. System enhancement should be
made based on a periodic assessment of user
comments. Any changes should be incremental,
not revolutionary. Syntax and semantics should
be carried forward between releases.

In sum, user friendly systems must be efficient,
give good performance, be available when
needed, and be reliable. It must be superbly
documented. The system must be free of idiosyn-
cracy. Maintainability is essential and the system
must be amenable to change.

These user friendly characteristics represent
objectives that should be clearly in mind before
designing the system. We believe that the judging
and design of all information systems, large and
small, should be subject to a weighted evaluation
of these criteria.

Ken Meyer and
Mike Harper
British Gas

Feedback. The system should let the user know
what it is doing, when it is experiencing difficulty,
or doing a long task.

Security. The system should not lose work that
has been successfully completed, even though
some of the (preceding or subsequent) tasks fail.

Incompleteness. The system should not create
unfinished business for the user. It should
acknowledge completeness.

Isolation. The system should not make the user
feel isolated, as though contact with the terminal
is being substituted for personal contact and nor-
mal social interchange.

Maintainability. System enhancement should be
made based on a periodic assessment of user
comments. Any changes should be incremental,
not revolutionary. Syntax and semantics should
be carried forward between releases.

In sum, user friendly systems must be efficient,
give good performance, be available when
needed, and be reliable. It must be superbly
documented. The system must be free of idiosyn-
cracy. Maintainability is essential and the system
must be amenable to change.

These user friendly characteristics represent
objectives that should be clearly in mind before
designing the system. We believe that the judging
and design of all information systems, large and
small, should be subject to a weighted evaluation
of these criteria.

Ken Meyer and
Mike Harper
British Gas

Feedback. The system should let the user know
what it is doing, when it is experiencing difficulty,
or doing a long task.

Security. The system should not lose work that
has been successfully completed, even though
some of the (preceding or subsequent) tasks fail.

Incompleteness. The system should not create
unfinished business for the user. It should
acknowledge completeness.

Isolation. The system should not make the user
feel isolated, as though contact with the terminal
is being substituted for personal contact and nor-
mal social interchange.

Maintainability. System enhancement should be
made based on a periodic assessment of user
comments. Any changes should be incremental,
not revolutionary. Syntax and semantics should
be carried forward between releases.

In sum, user friendly systems must be efficient,
give good performance, be available when
needed, and be reliable. It must be superbly
documented. The system must be free of idiosyn-
cracy. Maintainability is essential and the system
must be amenable to change.

These user friendly characteristics represent
objectives that should be clearly in mind before
designing the system. We believe that the judging
and design of all information systems, large and
small, should be subject to a weighted evaluation
of these criteria.

Ken Meyer and
Mike Harper
British Gas

Feedback. The system should let the user know
what it is doing, when it is experiencing difficulty,
or doing a long task.

Security. The system should not lose work that
has been successfully completed, even though
some of the (preceding or subsequent) tasks fail.

Incompleteness. The system should not create
unfinished business for the user. It should
acknowledge completeness.

Isolation. The system should not make the user
feel isolated, as though contact with the terminal
is being substituted for personal contact and nor-
mal social interchange.

Maintainability. System enhancement should be
made based on a periodic assessment of user
comments. Any changes should be incremental,
not revolutionary. Syntax and semantics should
be carried forward between releases.

In sum, user friendly systems must be efficient,
give good performance, be available when
needed, and be reliable. It must be superbly
documented. The system must be free of idiosyn-
cracy. Maintainability is essential and the system
must be amenable to change.

These user friendly characteristics represent
objectives that should be clearly in mind before
designing the system. We believe that the judging
and design of all information systems, large and
small, should be subject to a weighted evaluation
of these criteria.

Ken Meyer and
Mike Harper
British Gas

Feedback. The system should let the user know
what it is doing, when it is experiencing difficulty,
or doing a long task.

Security. The system should not lose work that
has been successfully completed, even though
some of the (preceding or subsequent) tasks fail.

Incompleteness. The system should not create
unfinished business for the user. It should
acknowledge completeness.

Isolation. The system should not make the user
feel isolated, as though contact with the terminal
is being substituted for personal contact and nor-
mal social interchange.

Maintainability. System enhancement should be
made based on a periodic assessment of user
comments. Any changes should be incremental,
not revolutionary. Syntax and semantics should
be carried forward between releases.

In sum, user friendly systems must be efficient,
give good performance, be available when
needed, and be reliable. It must be superbly
documented. The system must be free of idiosyn-
cracy. Maintainability is essential and the system
must be amenable to change.

These user friendly characteristics represent
objectives that should be clearly in mind before
designing the system. We believe that the judging
and design of all information systems, large and
small, should be subject to a weighted evaluation
of these criteria.

Ken Meyer and
Mike Harper
British Gas

Acknowledgements
The authors are obliged to Almos Kovacs and
C.C. Change [4] for suggesting better structuring
of the points.

Acknowledgements
The authors are obliged to Almos Kovacs and
C.C. Change [4] for suggesting better structuring
of the points.

Acknowledgements
The authors are obliged to Almos Kovacs and
C.C. Change [4] for suggesting better structuring
of the points.

Acknowledgements
The authors are obliged to Almos Kovacs and
C.C. Change [4] for suggesting better structuring
of the points.

Acknowledgements
The authors are obliged to Almos Kovacs and
C.C. Change [4] for suggesting better structuring
of the points.

Acknowledgements
The authors are obliged to Almos Kovacs and
C.C. Change [4] for suggesting better structuring
of the points.

2 MIS Quarterly/March 1984 2 MIS Quarterly/March 1984 2 MIS Quarterly/March 1984 2 MIS Quarterly/March 1984 2 MIS Quarterly/March 1984 2 MIS Quarterly/March 1984

Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions Issues and Opinions

References References References References References References

[1] Morland, D. V. "Friendliness," Datamation,
Volume 28, Number 2, February 1982,
p. 224.

[2] Jackson, M.A., "Data Structure as a Basis
For Program Design," in The Michael
Jackson Structured Program Design
Technique," Infotech International,

[1] Morland, D. V. "Friendliness," Datamation,
Volume 28, Number 2, February 1982,
p. 224.

[2] Jackson, M.A., "Data Structure as a Basis
For Program Design," in The Michael
Jackson Structured Program Design
Technique," Infotech International,

[1] Morland, D. V. "Friendliness," Datamation,
Volume 28, Number 2, February 1982,
p. 224.

[2] Jackson, M.A., "Data Structure as a Basis
For Program Design," in The Michael
Jackson Structured Program Design
Technique," Infotech International,

[1] Morland, D. V. "Friendliness," Datamation,
Volume 28, Number 2, February 1982,
p. 224.

[2] Jackson, M.A., "Data Structure as a Basis
For Program Design," in The Michael
Jackson Structured Program Design
Technique," Infotech International,

[1] Morland, D. V. "Friendliness," Datamation,
Volume 28, Number 2, February 1982,
p. 224.

[2] Jackson, M.A., "Data Structure as a Basis
For Program Design," in The Michael
Jackson Structured Program Design
Technique," Infotech International,

[1] Morland, D. V. "Friendliness," Datamation,
Volume 28, Number 2, February 1982,
p. 224.

[2] Jackson, M.A., "Data Structure as a Basis
For Program Design," in The Michael
Jackson Structured Program Design
Technique," Infotech International,

Maidenhead, Berkshire, England, Booklet
G-138, Issue 2, 1976.

[3] Jackson, M.A. Principles of Program
Design, Academic Press, New York, New
York, 1975, pp. 95-109.

[4] Chang, C.C., Butler Cox and Partner
Limited, correspondence to K. Meyer,
July 15, 1982.

Maidenhead, Berkshire, England, Booklet
G-138, Issue 2, 1976.

[3] Jackson, M.A. Principles of Program
Design, Academic Press, New York, New
York, 1975, pp. 95-109.

[4] Chang, C.C., Butler Cox and Partner
Limited, correspondence to K. Meyer,
July 15, 1982.

Maidenhead, Berkshire, England, Booklet
G-138, Issue 2, 1976.

[3] Jackson, M.A. Principles of Program
Design, Academic Press, New York, New
York, 1975, pp. 95-109.

[4] Chang, C.C., Butler Cox and Partner
Limited, correspondence to K. Meyer,
July 15, 1982.

Maidenhead, Berkshire, England, Booklet
G-138, Issue 2, 1976.

[3] Jackson, M.A. Principles of Program
Design, Academic Press, New York, New
York, 1975, pp. 95-109.

[4] Chang, C.C., Butler Cox and Partner
Limited, correspondence to K. Meyer,
July 15, 1982.

Maidenhead, Berkshire, England, Booklet
G-138, Issue 2, 1976.

[3] Jackson, M.A. Principles of Program
Design, Academic Press, New York, New
York, 1975, pp. 95-109.

[4] Chang, C.C., Butler Cox and Partner
Limited, correspondence to K. Meyer,
July 15, 1982.

Maidenhead, Berkshire, England, Booklet
G-138, Issue 2, 1976.

[3] Jackson, M.A. Principles of Program
Design, Academic Press, New York, New
York, 1975, pp. 95-109.

[4] Chang, C.C., Butler Cox and Partner
Limited, correspondence to K. Meyer,
July 15, 1982.

Issues and Opinions Author Guidelines
The "Issues and Opinions" feature of the MIS Quarterly has the objective of providing a forum for com-
municating opinions concerning important issues in MIS. The feature will appear from time to time in the
Quarterly in the position usually occupied by the "Editor's Comment."

I & 0 submissions should be no more than 1 250 words (or, in rare cases, 2500 words). They should be
written in a style which facilitates effective communication; academic and technical jargon is to be
deemphasized and there is no requirement for references (unless they are necessary to accomplishing the
objective).

Submissions should be structured so as to:

a) identify the "issue" in terms that are easy to understand,

b) offer an opinion and any evidence to support it,

c) precisely identifying the constituent elements and their relationships (the key objective of providing
such a structure is to allow others to offer contrary opinions in an organized and precise way - i.e., in
terms of the structure that you have presented).

Issues and Opinions Author Guidelines
The "Issues and Opinions" feature of the MIS Quarterly has the objective of providing a forum for com-
municating opinions concerning important issues in MIS. The feature will appear from time to time in the
Quarterly in the position usually occupied by the "Editor's Comment."

I & 0 submissions should be no more than 1 250 words (or, in rare cases, 2500 words). They should be
written in a style which facilitates effective communication; academic and technical jargon is to be
deemphasized and there is no requirement for references (unless they are necessary to accomplishing the
objective).

Submissions should be structured so as to:

a) identify the "issue" in terms that are easy to understand,

b) offer an opinion and any evidence to support it,

c) precisely identifying the constituent elements and their relationships (the key objective of providing
such a structure is to allow others to offer contrary opinions in an organized and precise way - i.e., in
terms of the structure that you have presented).

Issues and Opinions Author Guidelines
The "Issues and Opinions" feature of the MIS Quarterly has the objective of providing a forum for com-
municating opinions concerning important issues in MIS. The feature will appear from time to time in the
Quarterly in the position usually occupied by the "Editor's Comment."

I & 0 submissions should be no more than 1 250 words (or, in rare cases, 2500 words). They should be
written in a style which facilitates effective communication; academic and technical jargon is to be
deemphasized and there is no requirement for references (unless they are necessary to accomplishing the
objective).

Submissions should be structured so as to:

a) identify the "issue" in terms that are easy to understand,

b) offer an opinion and any evidence to support it,

c) precisely identifying the constituent elements and their relationships (the key objective of providing
such a structure is to allow others to offer contrary opinions in an organized and precise way - i.e., in
terms of the structure that you have presented).

Issues and Opinions Author Guidelines
The "Issues and Opinions" feature of the MIS Quarterly has the objective of providing a forum for com-
municating opinions concerning important issues in MIS. The feature will appear from time to time in the
Quarterly in the position usually occupied by the "Editor's Comment."

I & 0 submissions should be no more than 1 250 words (or, in rare cases, 2500 words). They should be
written in a style which facilitates effective communication; academic and technical jargon is to be
deemphasized and there is no requirement for references (unless they are necessary to accomplishing the
objective).

Submissions should be structured so as to:

a) identify the "issue" in terms that are easy to understand,

b) offer an opinion and any evidence to support it,

c) precisely identifying the constituent elements and their relationships (the key objective of providing
such a structure is to allow others to offer contrary opinions in an organized and precise way - i.e., in
terms of the structure that you have presented).

Issues and Opinions Author Guidelines
The "Issues and Opinions" feature of the MIS Quarterly has the objective of providing a forum for com-
municating opinions concerning important issues in MIS. The feature will appear from time to time in the
Quarterly in the position usually occupied by the "Editor's Comment."

I & 0 submissions should be no more than 1 250 words (or, in rare cases, 2500 words). They should be
written in a style which facilitates effective communication; academic and technical jargon is to be
deemphasized and there is no requirement for references (unless they are necessary to accomplishing the
objective).

Submissions should be structured so as to:

a) identify the "issue" in terms that are easy to understand,

b) offer an opinion and any evidence to support it,

c) precisely identifying the constituent elements and their relationships (the key objective of providing
such a structure is to allow others to offer contrary opinions in an organized and precise way - i.e., in
terms of the structure that you have presented).

Issues and Opinions Author Guidelines
The "Issues and Opinions" feature of the MIS Quarterly has the objective of providing a forum for com-
municating opinions concerning important issues in MIS. The feature will appear from time to time in the
Quarterly in the position usually occupied by the "Editor's Comment."

I & 0 submissions should be no more than 1 250 words (or, in rare cases, 2500 words). They should be
written in a style which facilitates effective communication; academic and technical jargon is to be
deemphasized and there is no requirement for references (unless they are necessary to accomplishing the
objective).

Submissions should be structured so as to:

a) identify the "issue" in terms that are easy to understand,

b) offer an opinion and any evidence to support it,

c) precisely identifying the constituent elements and their relationships (the key objective of providing
such a structure is to allow others to offer contrary opinions in an organized and precise way - i.e., in
terms of the structure that you have presented).

MIS Quarterly/March 1984 3 MIS Quarterly/March 1984 3 MIS Quarterly/March 1984 3 MIS Quarterly/March 1984 3 MIS Quarterly/March 1984 3 MIS Quarterly/March 1984 3

	Article Contents
	p. 1
	p. 2
	p. 3

	Issue Table of Contents
	MIS Quarterly, Vol. 8, No. 1 (Mar., 1984), pp. i-iii+1-66
	Volume Information
	Front Matter [p. i]
	Editor's Comment [p. iii]
	Issues and Opinions
	User Friendliness [pp. 1 - 3]

	Application
	Rituals in Information System Design [pp. 5 - 15]
	Effective Design and Use of Computer Decision Models [pp. 17 - 26]

	Theory and Research
	A Contingency Model for User Involvement in DSS Development [pp. 27 - 38]

	Conference on Information Systems Papers
	User Developed Applications: Evaluation of Success from the DP Department Perspective [pp. 39 - 50]
	A Comparative Examination of Systems Analysis Techniques [pp. 51 - 66]

	Back Matter

